
A bio-inspired solution for a local autonomous, 
reflex, obstacle avoiding behavior 

 

Dobrea Monica-Claudia, Dobrea Dan Marius 

Faculty of Electronics, Telecommunications and Information Technology, “Gh. Asachi” Technical University, Iasi, Romania 
serbanm@etti.tuiasi.ro, mdobrea@etti.tuiasi.ro 

 
Abstract—The main goal of our research consists in finding a 
simple, straightforward online solution for obstacle avoiding 
problem encountered in mobile robots. The solution allows the 
robot to develop a local autonomous obstacle avoiding behavior 
every time when a higher-level motor command that is driving the 
robot (e.g. go forward/backward) put it in imminent danger to 
collide. The solution we proposed for a robot with 36 evenly 
distributed infrared (IR) sensors is a very simple one, based only 
on a minimal artificial neural network (ANN) trained with a 
backpropagation-like algorithm. Computationally cheap, the on-
line learning algorithm we implemented proved to be very 
successful in both, static and dynamic clustered environment. The 
results reported here were obtained in MobotSim 1.0.03 – a 
configurable 2D simulator of differential drive mobile robots. 

I. INTRODUCTION 

For mobile robots a fundamental required ability is their local 
autonomous capacity to avoid obstacles. Until now, lots of 
methods [1], [2] were proposed to implement this behavior. 
While part of them was considered in the context of a simple 
wandering behavior, the others of them were implemented and 
discussed within some larger, goal-directed frameworks like 
those imposing either to reach a target, to plan the path or to 
follow the walls, a moving target or a line on a floor. 

In what follows the local obstacle avoidance issue is 
addressed as part of a larger project whose final aim is to build 
an intelligent wheelchair mentally guided by impaired people. 
The intelligent wheelchair will assist the users in navigation 
such that every time, as soon as the users will give a command 
(e.g. go ahead), it will execute the command but also will take 
care to avoid/circumvent properly and autonomously the 
obstacles lying on the path.  

Unlike most of the existing approaches our approach takes 
into consideration not the obstacle avoiding planning strategies 
but the defense reflex behavior that, in humans, is triggered 
when a sudden, unexpected, environmental change appears in 
the so-called peripersonal space1 (PPS) [3]. The key role of this 
fast-adapting mechanism, implemented at the lowest motor 
execution level, consists in placing with priority the robot out of 
any danger of colliding with both, static and dynamic obstacles. 
According to a bottom-up reactive architecture, the decision of 
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1 A protective space like an invisible bubble surrounding the body; whenever 
this margin of safety is violated, the individual steps away to restore it. 

the lowest obstacle-avoidance level is further taken into account 
by higher motor control levels with increasingly abstract goals. 
For us, the next higher abstract goal is circumventing the 
encountered obstacle and re-gaining the movement direction 
and the overall goal consists in moving in a particular given 
direction. In this paper only the lowest behavior integrated with 
the highest, overall goal will be considered (particularly, by 
looking for an efficient bio-inspired solution), following that in 
the future the obstacle circumventing problem to be also 
addressed.   

II. SOME BIOLOGICAL AND TECHNICAL CONSIDERATIONS 

A. Biological considerations 

In order to design a bio-inspired reflex obstacle-avoiding 
behavior some biological and psychological evidences were 
reviewed. Among them, the key elements exploited in our 
robotic implementation are summarized as follows. 

1) Most of the central nervous system’s (CNS) cells are 
formed before birth, but most of the connections among cells 
are made during infancy and early childhood. The way these 
connections are made is essentially shaped (a) through 
constant child interaction with the environment and, more, (b) 
by child’s chronologically acquired experiences (i.e., early 
experience and interaction with the environment are most 
critical in a child's CNS development).  

2) Reflexes – as the main protective, motor involuntary 
motor responses to sensory inputs – may be (1) inborn or (2) 
learned behaviors that allow the automatic performance of 
some more complex activity. The last are (i) taught or learned 
by each individual, (ii) come from experience (through trial and 
error, memories of past experiences and observations of 
others) and (iii) can be refined through practice in order to 
adapt to suit changing environmental conditions. 

3) In the defense of the body and maintenance of a margin 
of safety two important cortical areas, with short latency 
neuron responses, are involved: a) the ventral intra-parietal 
area (VIP) and b) the frontal polysensory area (PZ) [3]. In VIP 
and PZ areas (whose neurons respond to similar types of 
sensory stimuli and whose stimulation leads to similar 
defensive-like outputs2 [4]): i) most neurons are bimodal and 
trimodal, responding simultaneously to visual, tactile, and 
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auditory stimuli; ii) independently of the size of the stimulus, 
about half of VIP cells respond best to visual stimuli within 30 
cm of the body, and many respond only within a few 
centimeters; similarly, in PZ about 46% of the neurons give a 
strong, sustained response only for visual stimuli within 5 cm 
while another 40% give a response for visual stimuli within 20 
cm of the body surface; iii) multimodal cell responses show a 
gradient of firing rate as a function of distance to the stimulus 
located in the peripersonal space (i.e., responses decrease 
nonlinearly as a function of stimulus distance); iv) some VIP 
multisensory neurons receive vestibular input and they are 
thought to detect the direction of subject self-generated motion; 
v) PZ neurons projects directly at the motor spinal level, being 
thus involved in defensive motor output.       

4) Descending inputs from the brain are directly 
responsible for the initiation and generation of voluntary 
movements. The complex reflexes (e.g. like the obstacle-
avoiding reflex that usually sub-serves other voluntary goal-
directed movements) arise from the projection of sensory 
inputs, through spinal inter-neurons, on to spinal neuronal 
circuits like central pattern generators (CGPs) that execute 
stereotyped motor sequences. In this wiring diagram, the role 
of the spinal inter-neurons is to integrate descending inputs 
from the brain with primary afferent inputs and, thus, to adapt 
reflexes and the activity of spinal motor neurons to different 
functional requirements. 

5) The Mowrer's two-factor theory of avoidance postulates 
that avoidance learning involves two stages: (1) a first stage, in 
which the learner experiences classical/fear conditioning (e.g. 
an warning stimulus, like a small distance to an obstacle, is 
paired with an unpleasant situation, like collision; thus, a 
neutral stimulus becomes a conditioned stimulus (CS) capable 
of producing a strong conditioned fear response, and (2) a 
second stage, in which the learner experiences operant 
conditioning (i.e., the subject takes action response to the 
aversive CS and, thus, eliminates through negative 
reinforcement the aversive event). The last stage corresponds 
to avoidance learning process itself during which the avoidance 
behavior is not reinforced by avoidance of the unpleasant 
situation but by termination of the aversive and fear-evoking 
CS. In other words, the aversive stimuli reinforce the responses 
that remove them. 

6) The Gibson’s ecological theory of visual perception [5] 
claims that in order to generate the proper actions we need 
perceptual (not sensorial!) information related to the 
environmental factors that are important to the motor task. In 
our case we used an average-depth perception along with the 
perceptions of gait direction and speed. 

B. Technical and practical considerations 

In what follows our proposed obstacle avoidance learning 
implementation should be regarded only as a very reductionist 
model of its human analogue without loosing, however, of its 
relevance. Among all the bio-inspired models reported in the 
robotic literature as solutions for avoidance learning, the 
reinforcement learning (RL) models and the operant behavior 

(OB) models seem to be the most appealing. As in the human’s 
escape-avoidance learning these learning models: (1) does not 
require a complete knowledge of the environment or the 
knowledge of the action to be taken according to each particular 
subject-environment context (anyway, there is not a unique 
solution for the action to be taken); (2) above all, they require as 
many and diverse as possible robot-environment interactions, 
being, thus, online learning algorithms; (3) their learning 
technique is based on trial and error interaction with a dynamic 
environment; (4) they provide the autonomous mobile robot 
with suitable evaluation of its performance in terms of 
punishment and rewards. However, while the results obtained 
with each of the above mentioned learning models look very 
promising they are still missing some details or are facing some 
implementing problems that, finally, lead the solution to be 
faraway from expressing behavior in a human-like manner. 
Particularly, when speaking of reinforcement learning and its 
widely used implementation (i.e., Q-learning algorithm [6], 
which requires estimating for each possible [state, action] pair 
an expected discounted numerical signal reward), at least some 
downsides ought to be mentioned. 1) First, a huge Q-table needs 
to be manipulated when updating the Q-values (e.g., for a robot 
with 8 sensors, with 5 actions to choose and with an input range 
of 0-1022 for each sensor, a 1.1995 x 1024 x 5 Q-table3 is 
needed). Recently, instead of using the look-up tables to store 
the Q-values, the neural networks (NNs) are used for their both 
capacities – to give a more compact representation of Q values 
and to interpolate the Q values for the state-action pairs that had 
never been visited. However, while using different NN 
paradigms new problems [1] arise like, for example, the 
instability reported for multilayer perceptron architectures 
trained with the backpropagation algorithm. Exactly, it becomes 
very hard to ensure that learning of new patterns does not erode 
the previously learned knowledge. 2) A second important 
drawback is the very limited number of possible actions, 
entailed mainly by the computational constraints. 3) Another 
major drawback is the large amount of unknown parameters of 
both the Q-learning algorithm (i.e. discount rate, initial 
temperature parameter, reward function etc.) and of the neural 
network implementation; for more drawbacks see [2]. 

Unlike the RL methods, where in a first stage of exploration 
(learning phase), independently of the current state, the agent 
explore the environment by selecting non-greedy actions (using 
the Boltzmann probability distribution), in operant conditioning 
[2] the stimuli received by the robot are used to learn what 
actions to perform more (i.e. the rewarded ones) and what 
actions to perform less (i.e. the punished ones). Consequently, 
while both types of methods are online methods, the operation 
in real time is a characteristic of only the OB methods. More, it 
was reported in [2] that neither of the above methods achieves a 
perfect performance; one of the possible reasons for this could 
be the fact that in the training phase the reward or punishment 
term is used instead of the sensory input signal which is more 
appropriate given its higher potential information.  
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III. BIO-INSPIRED OBSTACLE AVOIDANCE LEARNING 

In what follows, a new bio-inspired avoidance learning 
method is presented and particularly implemented for a 
differential wheeled robot endowed with 36 evenly distributed 
IR sensors, Fig. 1.a. A behavior controller based on a minimal 
multilayer perceptron network and trained with a new 
introduced biological-like backpropagation (BBP) algorithm 
was considered in order to meet the online and in real time 
learning criteria.  
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Figure 1.  a) Arrangement of IR sensors; b) MLP’s configuration. 

The minimal architecture of the MLP network, Fig. 1.b, 
included 36 inputs (i.e. the 36 IR sensors readings, si) and 2 
outputs (y1, y2 providing commands for the 2 wheel actuators). 
The short range of IR sensors of only 30 cm made them 
appropriate to use for environment fast-adapting mechanisms. 
The sensors values were first linearized and, then, normalized in 
[0, 0.9] range, with 0 denoting no obstacle and 0.9 denoting 
collision. For the two output processing elements (PEs) the tanh 
activation function was used that limits the output values in the 
range [-1,+1]. The overall movement commands, coded as 
follows – forward (1, 1), backward (-1, -1), left (0, 0.5), right 
(0.5, 0) and stop (0, 0), were exerted through the biases (b1, b2) 
of the output PEs. In our implementation the forward and 
backward wheel directions were indicated by positive and 
negative values, respectively, while the right and left driving 
were obtained providing proper differential commands to the 
two engines. Speed information, yj, was provided as a 
proportional value between 0 (stop) and 1/-1 (maximum 
forward/backward movement). When calculating the activation 
of the output PEs we also added a small noise term, ξ, which 
prevented robot to get stick in a particular environment 
condition. To make a rough analogy with the human system, the 
NN’s input layer corresponds to the PZ zone, the output PEs are 
the inter-neurons that integrate the primary sensory information 
(passed through the PZ zone) with the cortical command, and 
the wheel actuators are the spinal CGPs. 

In its standard form (1) the BP algorithm needs a teacher that 
knows or can calculate the desired output for any given input. 
However, this is not our case since we cannot define the desired 
values for the engines commands, the latter depending on 
multiple (frequently unpredictable) factors. 
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Here, wij are the ANN’s weights, E is the error and η stands for 
the learning rate (in our case, 0.7). 

Yet, to be still entitled to use the BP algorithm (which best 
describes the way the infants are learning by doing, in a trial 
and error manner) we took advantage of three of the 
psychological theories: i) the ecological theory of visual 
perception, ii) the theory of internal motivation [7] and iii) the 
Mowrer's two-factor theory of avoidance. Finally, we came to a 
paradigm shift, namely, we substituted the teacher-centered 
paradigm, BP, with a new, learner-centered paradigm, BBP (2). 
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The weights’ new updating rule (2) differs from rule (1) only 
in the composite term Tj for which the equivalent term in (1) is 
(dj - yj); the latter is a measure of how much of the error value is 
due to the jth ANN output. Unlike the standard BP (1) where 
this error term has a clear analytic form, depending on the 
desired value, dj, and on the ANN’s actual output, yj, in BBP it 
is calculated in the particular manner the learner’s brain 
perceives the environment stimuli (i.e Ej) and manipulates these 
perceptions (i.e. Critj). These last new introduced terms will be 
explained later in this paper. 

Normally, the brain uses the difference between the way the 
world is perceived and the way it should be perceived 
(according to our goals) as an error information and tries to 
correct the movement. In order to generate the proper actions, 
humans use perceptual, not sensorial information related to the 
environmental factors that are important to the motor task. In 
our case, the perception of the aversive stimuli, Aj – that is 
related to the perception of average depth4 to the obstacles lying 
within the contralateral right/left side of the robot – was used in 
the learning phase (2). For each output PE a different Aj was 
computed in order to facilitate the learning of both side reflexes 
(this ensures avoiding obstacles by the appropriate side). In (2), 
nj represents the number of the sensors from the contra-lateral 
part that are of non-zero value. In the BBP learning algorithm 
the aversive CS, given by the perception Aj, becomes larger as 
the average depth to obstacles lying in the right/left PPS 
becomes smaller and ceases (becomes zero) when all 
corresponding sensor readings indicate a zero value. The last 
case corresponds to the desired perception of the environment, 
Aj

d = 0, when the robot is ideally located at a least 30 cm 
distance from any surrounding obstacle. Accordingly, the 
learner-derived error, Ej, is finally given by the perception Aj 
which is nothing else but the aversive stimuli that should be 
removed. The learner-derived error, assessed in [0, 0.9] range, 
complies with the fundamental paradigm that defines the BP 
error: when the adaptive system successfully solves the problem 
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the error is zero; otherwise, the error measures the distance 
between the desired results and the current outputs of the 
adaptive system. 

Further, according to the same operant conditioning stage, the 
learner reinforces those actions that remove the aversive stimuli. 
For this he evaluates the consequences of its own actions, as 
response to the environmental stimuli, and internally generates 
a scalar reward, sign(Aj[n] –Aj[n-1]), that accounts for the 
learning progress. This qualitative measure along with the 
perception of movement’s direction of wheels make up the 
critic term, Crit, which controls the way the ANN is updating its 
parameters. Namely, the updating in the same last movement 
direction is encouraged whenever the learner is moving such as 
to remove/diminish the aversive stimuli, Aj[n] ≤Aj[n-1] or the 
updating takes place in the opposite direction in the other case. 

In the BBP paradigm, in order to capture the fact that learning 
ceases when avoidance behavior is well practiced, we imposed 
that after the first 300 steps, during each trial the weights’ 
updating to be further done only if at least one of the ANN input 
was more than 0.8.  

The maximum wheel speed was 0.3 m/s and the delay 
between each system action (movement) and its subsequent 
sensors reading was 400 ms. The initial values of the weights 
were not randomly generated but, instead, they were assessed to 
zero in order to mimic the progressive neural wiring 
encountered in babies during their neural control development 
process.  

IV. RESULTS AND DISCUSSIONS 

We tested our learning algorithm in both, static and dynamic 
environment (with two and, respectively, with five mobile 
robots), in MobotSim 1.0.03 simulator. The avoidance behavior 
learned with the new algorithm is presented in Fig. 2.a for the 
first 2527 steps and, respectively, in Fig. 2.b for the first 70517 
steps.  

Analyzing the way the robot learned the avoidance behavior 
the following main ideas can be extracted. As in humans: (1) 
The proposed method allowed the online and the in real time 
learning implementation (being computationally cheap). (2) The 
learning occurred quickly (after only one or two collisions) and 
it was very durable, without any other collisions. (2) For 
learning process the most important were the first interactions 
with the environment, these mainly shaping the later overall 
avoidance behavior. (3) One important consequence of our 
proposed solution was the construction of a margin of safety 
around the robot. This agrees with the recognized fact that 
human “personal space” is the result of a defensive mechanism 
that monitors potentially threatening objects near the body. (4) 
The robot reacted promptly whatever the approaching stimulus 
(second robot) direction was. (5) The way the movement is 
generated through the two differential wheels, and the way the 
ANN outputs are calculated allow for a wide range of 
movements, from here resulting the high movement flexibility. 
(6) For each of the five “cortical” motor commands a different 
ANN was implemented and trained and each time the robot 
succeeded to learn the avoidance behavior indifferently of the 
selected movement direction. (7) The “cortical” command and 

the autonomous behavior successfully switched control each 
time the environment context required. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  The avoidance behavior learned by the robot: a) the first 2527 steps 
and b) the first 70517 steps of the algorithm 

V. CONCLUSIONS 

In this paper, the concept of a robotic bio-inspired reactive 
behavior control is briefly presented. The biological 
plausibility, alongside the high simplicity of learning technique 
and learning paradigm, makes the system very effective: i) it 
learns fast and in a consistent manner; ii) the autonomous 
behavior is achieved online, in real time and in an unstructured 
and dynamic environment, iii) the “cortical” command and the 
autonomous behavior successfully switch control each time the 
environment context requires. 
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